4.5 Article

Luteolin Could Improve Cognitive Dysfunction by Inhibiting Neuroinflammation

期刊

NEUROCHEMICAL RESEARCH
卷 43, 期 4, 页码 806-820

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11064-018-2482-2

关键词

Chronic cerebral hypoperfusion; Cognition dysfunction; Neuroinflammation; Luteolin

资金

  1. National Natural Science Foundation of China (NSFC) [81400891]

向作者/读者索取更多资源

Neuroinflammation and oxidative stress play an important role in cognition deficit following chronic cerebral hypoperfusion (CCH). Luteolin, a natural flavonoid found in many plants, is known for a variety of pharmacological activities, such as its anti-inflammatory, anti-allergy, urate, anti-tumor, antibacterial, and antiviral effects. To assess whether luteolin could prevent CCH-induced cognitive dysfunction, through its anti-inflammatory and anti-oxidative-stress effects, we used enzyme-linked immunosorbent assays, enzyme activity assays, behavioral methods, immunohistochemistry, and electrophysiology to detect neuroinflammation and oxidative stress, cognition alterations, and long-term potential (LTP), in a bilateral common carotid arteries ligation (2VO) rat model. We demonstrated that CCH increased tumor necrosis factor alpha (TNF-alpha), interleukin 1 beta (IL-1 beta), interleukin 6 (IL-6), and malondialdehyde (MDA), and decreased superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels. Further, it caused microglia over-activation and astrogliosis, learning and short-term memory dysfunction, and an LTP deficit. Luteolin treatment reversed CCH-induced changes. Specifically, luteolin prevented the increase of TNF-alpha and IL-1 beta, IL-6, and MDA, improved the activity of SOD and GPx, inhibited microglia over-activation and astrogliosis (particularly in the hippocampus and cortex), and ameliorated learning and short-term memory dysfunction, and LTP deficit. Thus, our study suggested that luteolin could be a preferable anti-inflammatory agent to protect cognitive function and synaptic plasticity following CCH. Luteolin could also be putative therapeutic candidate for other inflammation-related brain diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据