4.5 Article

Microglia Polarization and Endoplasmic Reticulum Stress in Chronic Social Defeat Stress Induced Depression Mouse

期刊

NEUROCHEMICAL RESEARCH
卷 43, 期 5, 页码 985-994

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11064-018-2504-0

关键词

Depression; Inflammation; Microglia; Endoplasmic reticulum stress

资金

  1. National Natural Science Foundation of China [81671151, 81371414]

向作者/读者索取更多资源

Inflammation recently has been considered to be participated in the pathogenesis of major depressive disorder (MDD). However, the detailed mechanism of inflammation in depression has not been completely understood yet. In the present study, depression mice model was established by chronic social defeat stress (CSDS) method and confirmed by behavior examinations including forced swimming test and sucrose preference test. The decrease of spine density and postsynaptic density protein 95 (PSD95) in hippocampus further verified the depression model. Then, the microglia polarization state and endoplasmic reticulum (ER) stress were investigated. At transcriptional level, M1 marker (inducible nitric oxide synthase (iNOS), CD16, CD86, CXCL10) in CSDS mice was higher than that in control group while there was no difference in M2 marker (Arginase and CD206) between two groups. And it was observed in the hippocampus of CSDS induced depression mice that increased activated microglia was merged with iNOS instead of arginase by immunofluorescence staining. Furthermore, the M1 marker Interleukin (IL)-1 beta and tumor necrosis factor (TNF)-alpha were increased in depression mice while the M1 marker IL-6 and M2 marker IL-10 remained unchanged. The expression of ER stress signaling factors, including protein kinase RNA-like ER kinase (PERK), Phosphorylated alpha-subunit of eukaryotic translation initiation factor 2(p-eIF2 alpha), C/EBP homologous protein (CHOP), and X-box binding protein 1(XBP1) were significantly higher in CSDS-induced depression mice than in control mice. In all, our results suggest that M1 polarization and ER stress play a vital role in MDD pathogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据