4.6 Article

Parallel and incremental credit card fraud detection model to handle concept drift and data imbalance

期刊

NEURAL COMPUTING & APPLICATIONS
卷 31, 期 -, 页码 3-14

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00521-018-3633-8

关键词

Fraud detection; Cost-sensitive bagging; Concept drift; Incremental learning; Data imbalance; Bagging

资金

  1. DEITY

向作者/读者索取更多资源

Real-time fraud detection in credit card transactions is challenging due to the intrinsic properties of transaction data, namely data imbalance, noise, borderline entities and concept drift. The advent of mobile payment systems has further complicated the fraud detection process. This paper proposes a transaction window bagging (TWB) model, a parallel and incremental learning ensemble, as a solution to handle the issues in credit card transaction data. TWB model uses a parallelized bagging approach, incorporated with an incremental learning model, cost-sensitive base learner and a weighted voting-based combiner to effectively handle concept drift and data imbalance. Experiments were performed with Brazilian Bank data and University of California, San Diego (UCSD) data, and results were compared with state-of-the-art models. Comparisons on Brazilian Bank data indicates increased fraud detection levels between 18-38% and 1.3-2 times lower cost levels, which exhibits the enhanced performances of TWB. Comparisons on UCSD data indicate improved precision levels ranging between 8 and 25%, indicating the robustness of the TWB model. Future extensions of the proposed model will be on incorporating feature engineering to improve performances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据