4.8 Article

Constant-pressure sound waves in non-Hermitian disordered media

期刊

NATURE PHYSICS
卷 14, 期 9, 页码 942-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41567-018-0188-7

关键词

-

向作者/读者索取更多资源

When waves impinge on a disordered material they are back-scattered and form a highly complex interference pattern. Suppressing any such distortions of a wave's free propagation is a challenging task with many applications in a number of different disciplines. In a recent theoretical proposal, it was pointed out that both perfect transmission through disorder as well as a complete suppression of any variation in a wave's intensity can be achieved by adding a continuous gain-loss distribution to the disorder. Here we propose a practical discretized version of this abstract concept and implement it in a realistic acoustic system. Our prototype consists of an acoustic waveguide containing several inclusions that scatter the incoming wave in a passive configuration and provide the gain or loss when being actively controlled. Our measurements on this non-Hermitian acoustic metamaterial demonstrate the creation of a reflectionless scattering wave state that features a unique form of discrete constant-amplitude pressure waves. In addition to demonstrating that gain-loss additions can turn localized systems into transparent ones, we expect our proof-of-principle demonstration to trigger interesting new developments, not only in sound engineering, but also in other related fields such as in non-Hermitian photonics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据