4.8 Article

Spontaneous shear flow in confined cellular nematics

期刊

NATURE PHYSICS
卷 14, 期 7, 页码 728-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41567-018-0099-7

关键词

-

资金

  1. CelTisPhyBio Labex
  2. EU PRESTIGE
  3. Francis Crick Institute from Cancer Research UK [FC001317]
  4. UK Medical Research Council [FC001317]
  5. Wellcome Trust [FC001317]

向作者/读者索取更多资源

In embryonic development or tumour evolution, cells often migrate collectively within confining tracks defined by their microenvironment(1,2). In some of these situations, the displacements within a cell strand are antiparallel(3), giving rise to shear flows. However, the mechanisms underlying these spontaneous flows remain poorly understood. Here, we show that an ensemble of spindle-shaped cells plated in a well-defined stripe spontaneously develops a shear flow whose characteristics depend on the width of the stripe. On wide stripes, the cells self-organize in a nematic phase with a director at a well-defined angle with the stripe's direction, and develop a shear flow close to the stripe's edges. However, on stripes narrower than a critical width, the cells perfectly align with the stripe's direction and the net flow vanishes. A hydrodynamic active gel theory provides an understanding of these observations and identifies the transition between the non-flowing phase oriented along the stripe and the tilted phase exhibiting shear flow as a Freedericksz transition driven by the activity of the cells. This physical theory is grounded in the active nature of the cells and based on symmetries and conservation laws, providing a generic mechanism to interpret in vivo antiparallel cell displacements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据