4.8 Article

Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation

期刊

NATURE
卷 554, 期 7690, 页码 123-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/nature25434

关键词

-

资金

  1. National Natural Science Foundation of China [81788101, 31390431, 91542204, 31670884]
  2. Shanghai Rising-Star Program [17QA1405300]
  3. CAMS Innovation Fund for Medical Science [2016-12M-1-003]

向作者/读者索取更多资源

Varieties of RNA modification form the epitranscriptome for post-transcriptional regulation(1). 5-Methylcytosine (5-mC) is a sparse RNA modification in messenger RNA (mRNA) under physiological conditions(2). The function of RNA 5-hydroxymethylcytosine (5-hmC) oxidized by ten-eleven translocation (Tet) proteins in Drosophila has been revealed more recently(3,4). However, the turnover and function of 5-mC in mammalian mRNA have been largely unknown. Tet2 suppresses myeloid malignancies mostly in an enzymatic activity-dependent manner(5), and is important in resolving inflammatory response in an enzymatic activityindependent way6. Myelopoiesis is a common host immune response in acute and chronic infections; however, its epigenetic mechanism needs to be identified. Here we demonstrate that Tet2 promotes infection-induced myelopoiesis in an mRNA oxidation-dependent manner through Adar(1)-mediated repression of Socs3 expression at the post-transcription level. Tet2 promotes both abdominal sepsis-induced emergency myelopoiesis and parasite-induced mast cell expansion through decreasing mRNA levels of Socs(3), a key negative regulator of the JAK-STAT pathway that is critical for cytokine-induced myelopoiesis. Tet2 represses Socs3 expression through Adar1, which binds and destabilizes Socs3 mRNA in a RNA editing-independent manner. For the underlying mechanism of Tet2 regulation at the mRNA level, Tet2 mediates oxidation of 5-mC in mRNA. Tet(2) deficiency leads to the transcriptome-wide appearance of methylated cytosines, including ones in the 3 ' untranslated region of Socs(3), which influences double-stranded RNA formation for Adar(1) binding, probably through cytosine methylation-specific readers, such as RNA helicases. Our study reveals a previously unknown regulatory role of Tet2 at the epitranscriptomic level, promoting myelopoiesis during infection in the mammalian system by decreasing 5-mCs in mRNAs. Moreover, the inhibitory function of cytosine methylation on double-stranded RNA formation and Adar1 binding in mRNA reveals its new physiological role in the mammalian system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据