4.6 Article

Flood propagation and duration in large river basins: a data-driven analysis for reinsurance purposes

期刊

NATURAL HAZARDS
卷 94, 期 1, 页码 71-92

出版社

SPRINGER
DOI: 10.1007/s11069-018-3374-0

关键词

Flood propagation; Flood duration; Data-driven methods; River network; Excess of loss reinsurance; Hours clause; European basins

资金

  1. Engineering and Physical Sciences Research Council (EPSRC) [EP/K013513/1]
  2. Willis Research Network
  3. EPSRC [EP/K013513/1] Funding Source: UKRI

向作者/读者索取更多资源

Duration is a key characteristic of floods influencing the design of protection infrastructures for prevention, deployment of rescue resources during the emergency, and repartition of damage costs in the aftermath. The latter financial aspect mainly relies on the insurance industry and allows the transfer of damage costs from the public sector to the private capital market. In this context, the cost of catastrophes affecting a large amount of insured properties is partly or totally transferred from insurance companies to reinsurance companies by contracts that define the portion of transferred costs according to the temporal extent of the flood events synthesized in the so-called hours clause. However, hours clauses imply standard flood event durations, such as 168h (1week), regardless of the hydrological properties characterizing different areas. In this study, we firstly perform a synoptic-scale exploratory analysis to investigate the duration and magnitude of large flood events that occurred around the world and in Europe between 1985 and 2016, and then we present a data-driven procedure devised to compute flood duration by tracking flood peaks along a river network. The exploratory analysis highlights the link of flood duration and magnitude with flood generation mechanism, thus allowing the identification of regions that are more or less prone to long-lasting events exceeding the standard hours clauses. The flood tracking procedure is applied to seven of the largest river basins in Central and Eastern Europe (Danube, Rhine, Elbe, Weser, Rhone, Loire, and Garonne). It correctly identifies major flood events and enables the definition of the probability distribution of the flood propagation time and its sampling uncertainty. Overall, we provide information and analysis tools readily applicable to improve reinsurance practices with respect to spatiotemporal extent of flooding hazard.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据