4.6 Article

Piezoelectric effects on the resonance frequencies of boron nitride nanosheets

期刊

NANOTECHNOLOGY
卷 29, 期 39, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6528/aad1b5

关键词

boron nitride nanosheet; resonance property; piezoelectricity; interlayer interaction

资金

  1. National Natural Science Foundation of China [11602074]
  2. Harbin Institute of Technology (Shenzhen Graduate School) through the Scientific Research Starting Project for New Faculty

向作者/读者索取更多资源

By using molecular dynamics (MD) simulations, we find in this work that due to the piezoelectric characteristic of boron nitride (BN) nanosheets their resonance frequencies can be efficiently tuned by applying an external electric field. This finding suggests that BN nanosheet can be treated as a good building block for designing novel piezoelectrically tunable two-dimensional nanoresonators. As BN nanosheets possess an inversely stacked structure, the applied electric field has different effects on the resonance frequency of BN nanosheets with odd and even layers. The influence of piezoelectric effect on the vibration behaviours observed in MD simulations is found to significantly deviate from the prediction of the conventional Euler-Bernoulli beam model (EBM), since the EBM cannot account for the weak van der Waals interaction between neighbouring layers in BN nanosheets. To take into account the interlayer interaction in the mathematical modelling of the piezoelectric effect on the vibration of BN nanosheets, we propose here a novel multiple beam model (MBM), which can account for both interlayer stretching and shearing deformations. The MBM result is found to be in a good agreement with the MD result without any additional parameters fitting, which indicates that the present MBM can be treated as a more precise theoretical model in the future study of the vibration properties of BN nanosheets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据