4.6 Article

Optimization of ScSZ/GDC bilayer thin film electrolyte for anodic aluminum oxide supported low temperature solid oxide fuel cells

期刊

NANOTECHNOLOGY
卷 29, 期 34, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6528/aac132

关键词

low temperature solid oxide fuel cells; scandia stabilized zirconia; gadolinia doped ceria; bilayer; anodized aluminum oxide

资金

  1. Global Frontier R&D Program on Center for Multiscale Energy System - National Research Foundation under the Ministry of Science, ICT & Future Planning, Korea [2012M3A6A7054855]
  2. Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [2017M3D1A1040688]
  3. JSPS (Kyoto University) [2017K2A9A2A08000197]
  4. NRF (Seoul National University) [2017K2A9A2A08000197]
  5. Seoul Urban Data Science Lab Project through the Seoul Digital Foundation - Seoul Metropolitan Government

向作者/读者索取更多资源

Due to the poor chemical stability of CeO2-based materials, doped CeO2 electrolytes are generally used as a stabilized ZrO2 protection layer/doped CeO2 electrolyte bilayer structure. Since the ionic conductivity of stabilized ZrO2 materials is lower than that of doped CeO2 materials, the thickness of the ZrO2 protective layer needs to be optimized. Thus, in this study, nano-porous anodic aluminum oxide template based scandia stabilized zirconia (ScSZ)/gadolinia doped ceria (GDC) bilayer electrolyte low temperature solid oxide fuel cells (LT-SOFCs) are successfully fabricated and investigated. The optimized thickness of the ScSZ protection layer is revealed by physical and electrochemical characterizations to maximize the performance of LT-SOFCs. The 160 nm ScSZ/400 nm GDC bilayer electrolyte LT-SOFC achieves a maximum power density of 252mW . cm(-2) and an open circuit voltage of 1.02 V OCV at 450 degrees C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据