4.6 Article

Dipyridamole-loaded biodegradable PLA nanoplatforms as coatings for cardiovascular stents

期刊

NANOTECHNOLOGY
卷 29, 期 27, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6528/aabc69

关键词

electrospinning; polylactic acid; dipyridamole; cardiac diseases; tissue engineering

资金

  1. European Union's Horizon research and innovation programme [646222]

向作者/读者索取更多资源

Cardiovascular stents are commonly used for the treatment of cardiovascular diseases that in developed societies are the most frequent causes of mortality and morbidity. In recent years, thorough research and development of drug-eluting stents has been done, with emphasis on coronary stenting to avoid the most common complication, in-stent thrombosis. Dipyridamole (DPM) is a medication that inhibits blood clot formation. Drug delivery nanoplatforms consisting of biodegradable polymers can be fabricated via electrospinning deposition, known for its cost-effective and versatile advantages, that produces fibrous scaffolds that are able to sustain and control drug release. A novel drug delivery nanosystem of polylactic acid fibrous scaffold loaded with the anti-platelet drug DPM was fabricated by electrospinning as coating for cardiovascular stents. The surface morphology and topography that were evaluated via atomic force microscopy, scanning electron microscopy and optical microscopy, were found to be good and suitable for tissue engineering. Contact angle measurements established the hydrophobic behavior of these fibrous nanoplatforms. Drug-release kinetics and degradation studies were conducted and revealed a sustained and controllable release of DPM, through this fibrous matrix over time. Finally, cytotoxicity studies took place to evaluate the cytocompatibility of the scaffold that confirmed its compatible behavior. The successful performance of this nanoplatform can lead to it being a valuable tool for atherosclerosis treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据