4.8 Article

Nano-graphene oxide-manganese dioxide nanocomposites for overcoming tumor hypoxia and enhancing cancer radioisotope therapy

期刊

NANOSCALE
卷 10, 期 11, 页码 5114-5123

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr08747k

关键词

-

资金

  1. National Natural Science Foundation of China [81471716, 81302383, 81672430, 31400861, 11575124]
  2. National Natural Science Foundation of Jiangsu Province [BK20140320]
  3. Funds for Young medical Scholars of Juangsu province [QNRC2016232]
  4. Science and Technology Bureau of Suzhou [SYS201653]
  5. Anhui polytechnic University youth talent Support program [2016BJRC006]
  6. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  7. Funds of Science Technology Department of Zhejiang Province [LGF18H160026]

向作者/读者索取更多资源

While radiotherapy (RT) is commonly used in clinics for cancer treatment, the therapeutic efficiency is not satisfactory owing to the existence of the hypoxic tumor microenvironment which seriously affects the efficiency of RT. Herein, we design polyethylene glycol (PEG)-modified reduced nano-graphene oxide manganese dioxide (rGO-MnO2-PEG) nanocomposites to trigger oxygen generation from H2O2 to reduce the tumor hypoxic microenvironments. We use the radioisotope, I-131 labeled rGO-MnO2-PEG nanocomposites as therapeutic agents for in vivo tumor radioisotope therapy (RIT), achieving excellent tumor killing and further enhancing the therapeutic efficiency of RIT. More importantly, the dissolution of MnO2 under acidic conditions and the redox process during the catalytic pathway of H2O2 decomposition in the cellular microenvironment direct to the production of an enormous amount of Mn2+ which has been used as a contrast agent for magnetic resonance imaging (MRI). Our proposed work provides a strategy to trigger oxygen formation via an internal stimulus to enhance imaging-guided RIT efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据