4.8 Article

Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas

期刊

NANOSCALE
卷 10, 期 8, 页码 3688-3696

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr06920k

关键词

-

资金

  1. National Key Research and Development Program of China [2017YFB1104700]
  2. National Science Foundation of China [51335008, 61475124]
  3. NSAF [U1630111]
  4. China Postdoctoral Science Foundation [2016M600786]
  5. Collaborative Innovation Center of Suzhou Nano Science and Technology
  6. International Joint Research Center for Micro/Nano Manufacturing and Measurement Technologies

向作者/读者索取更多资源

Controlling underwater bubble behavior on a solid surface is of great research significance, particularly in extreme cases. However, the realization of artificial underwater superaerophobic or superaerophilic surfaces is still a challenge. Herein, a micro/nanoscale hierarchical rough structure was formed on polydimethylsiloxane (PDMS) surface by one-step femtosecond laser ablation. The as-prepared surface showed superhydrophobicity in air and superaerophilicity in water. Interestingly, the wettability of such a PDMS surface could be easily switched to in-air superhydrophilicity and underwater superaerophobicity once it was further irradiated by oxygen plasma because the surface chemistry changed. The original femtosecond laser-structured underwater superaerophilic PDMS surface could absorb/capture bubbles, while the plasma-treated underwater superaerophobic surface had excellent anti-bubble ability in water. A rough through-microhole-array PDMS sheet was prepared by a mechanical drilling process and subsequent femtosecond laser ablation. The sheet could selectively allow bubbles to pass, that is, the porous underwater superaerophilic sheet allowed bubbles to pass through, while the porous underwater superaerophobic sheet was able to intercept bubbles in a water medium. Using the porous underwater superaerophilic PDMS sheet as the core component, a device that has great ability of collecting underwater bubbles/gas was also designed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据