4.6 Article

Efficient gene editing via non-viral delivery of CRISPR-Cas9 system using polymeric and hybrid microcarriers

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nano.2017.09.001

关键词

Gene delivery; CRISPR-Cas9; Gene editing; Polyelectrolyte microcapsules; Sol-gel

资金

  1. Russian Science Foundation [17-73-10023]

向作者/读者索取更多资源

CRISPR-Cas9 is a revolutionary genome-editing technology that has enormous potential for the treatment of genetic diseases. However, the lack of efficient and safe, non-viral delivery systems has hindered its clinical application. Here, we report on the application of polymeric and hybrid microcarriers, made of degradable polymers such as polypeptides and polysaccharides and modified by silica shell, for delivery of all CRISPR-Cas9 components. We found that these microcarriers mediate more efficient transfection than a commercially available liposome-based transfection reagent (>70% vs. <50% for mRNA, >40% vs. 20% for plasmid DNA). For proof-of-concept, we delivered CRISPR-Cas9 components using our capsules to dTomato-expressing HEK293T cells-a model, in which loss of red fluorescence indicates successful gene editing. Notably, transfection of indicator cells translated in high-level dTomato knockout in approx. 70% of transfected cells. In conclusion, we have provided proof-of-principle that our micro-sized containers represent promising non-viral platforms for efficient and safe gene editing. (c) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据