4.6 Article

TAT-modified self-assembled cationic peptide nanoparticles as an efficient antibacterial agent

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nano.2017.11.002

关键词

Cationic peptide; Self-assembly; Antibacterial activity; Drug resistance; Core-shell nanoparticles

资金

  1. University-Industry Cooperation

向作者/读者索取更多资源

The increasing emergence of drug resistant pathogenic bacteria poses a great challenge to clinical therapy and a threat to public health. Cationic peptides have received great attention for their unique antibacterial mechanism and ability to combat drug-resistant bacteria. In this study, we designed a TAT-modified cationic peptide PA-28 which self-assembled into nanoparticles of about 150 nm. These nanoparticles showed strong antimicrobial activities against both gram-positive and gram-negative bacteria, including drug-resistant bacteria. They were more potent than the unassembled counterpart peptide nonalysine (K-9). Their antibacterial mechanism of directly destructing bacterial wall/membrane reduces the possibility of developing bacterial resistance. In vivo anti-infective experiments showed that these nanoparticles were able to penetrate the blood-brain barrier to inhibit bacterial growth in infected brains of rats. In addition, these nanoparticles induced low hemolysis below the minimum inhibitory concentration. Therefore, the peptide designed in this study is a promising and efficient antibacterial agent against bacterial infections. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据