4.6 Article

Nanocellulose reinforced gellan-gum hydrogels as potential biological substitutes for annulus fibrosus tissue regeneration

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nano.2017.11.011

关键词

Self-gelling; Nanocellulose; Methacrylated gellan-gum; Nanocomposite hydrogels; Annulus fibrosus; Intervertebral disc degeneration

向作者/读者索取更多资源

Intervertebral disc (IVD) degeneration is associated with both structural damage and aging related degeneration. Annulus fibrosus (AF) defects such as annular tears, herniation and discectomy require novel tissue engineering strategies to functionally repair AF tissue. An ideal construct will repair the AF by providing physical and biological support, facilitating regeneration. The presented strategy herein proposes a gellan gum-based construct reinforced with cellulose nanocrystals (nCell) as a biological self-gelling AF substitute. Nanocomposite hydrogels were fabricated and characterized with respect to hydrogel swelling capacity, degradation rate in vitro and mechanical properties. Rheological evaluation on the nanocomposites demonstrated the GGMA reinforcement with nCell promoted matrix entanglement with higher scaffold stiffness observed upon ionic crosslinking. Compressive mechanical tests demonstrated compressive modulus values close to those of the human AF tissue. Furthermore, cell culture studies with encapsulated bovine AF cells indicated that nanocomposite constructs promoted cell viability and a physiologically relevant cell morphology for up to fourteen days in vitro. (c) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据