4.8 Article

MoS2/MnO2 heterostructured nanodevices for electrochemical energy storage

期刊

NANO RESEARCH
卷 11, 期 4, 页码 2083-2092

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-017-1826-6

关键词

energy storage; nanoscale device; heterostructure; electrochemical performance; electrical transport

资金

  1. National Key Research and Development Program of China [2016YFA0202603]
  2. National Basic Research Program of China [2013CB934103]
  3. Programme of Introducing Talents of Discipline to Universities [B17034]
  4. National Natural Science Foundation of China [51521001]
  5. National Natural Science Fund for Distinguished Young Scholars [51425204]
  6. Fundamental Research Funds for the Central Universities [WUT: 2016III001, 2017III009]
  7. China Scholarship Council [201606955096]

向作者/读者索取更多资源

Hybrid or composite heterostructured electrode materials have been widely studied for their potential application in electrochemical energy storage. Whereas their physical or chemical properties could be affected significantly by modulating the heterogeneous interface, the underlying mechanisms are not yet fully understood. In this work, we fabricated an electrochemical energy storage device with a MoS2 nanosheet/MnO2 nanowire heterostructure and designed two charge/discharge channels to study the effect of the heterogeneous interface on the energy storage performances. Electrochemical measurements show that a capacity improvement of over 50% is achieved when the metal current collector was in contact with the MnO2 instead of the MoS2 side. We propose that this enhancement is due to the unidirectional conductivity of the MoS2/MnO2 heterogeneous interface, resulting from the unimpeded electrical transport in the MnO2-MoS2 channel along with the blocking effect on the electron transport in the MoS2-MnO2 channel, which leads to reaction kinetics optimization. The present study thus provides important insights that will improve our understanding of heterostructured electrode materials for electrochemical energy storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据