4.8 Article

Phoresis and Enhanced Diffusion Compete in Enzyme Chemotaxis

期刊

NANO LETTERS
卷 18, 期 4, 页码 2711-2717

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.8b00717

关键词

Chemotaxis; diffusion; phoresis; enzymes

资金

  1. U.S. National Science Foundation under MRSEC [DMR-1420620]

向作者/读者索取更多资源

Chemotaxis of enzymes in response to gradients in the concentration of their substrate has been widely reported in recent experiments, but a basic understanding of the process is still lacking. Here, we develop a microscopic theory for chemotaxis that is valid for enzymes and other small molecules. Our theory includes both nonspecific interactions between enzyme and substrate as well as complex formation through specific binding between the enzyme and the substrate. We find that two distinct mechanisms contribute to enzyme chemotaxis: a diffusiophoretic mechanism due to the nonspecific interactions and a new type of mechanism due to binding-induced changes in the diffusion coefficient of the enzyme. The latter chemotactic mechanism points toward lower substrate concentration if the substrate enhances enzyme diffusion and toward higher substrate concentration if the substrate inhibits enzyme diffusion. For a typical enzyme, attractive phoresis and binding-induced enhanced diffusion will compete against each other. We find that phoresis dominates above a critical substrate concentration, whereas binding-induced enhanced diffusion dominates for low substrate concentration. Our results resolve an apparent contradiction regarding the direction of urease chemotaxis observed in experiments and, in general, clarify the relation between the enhanced diffusion and the chemotaxis of enzymes. Finally, we show that the competition between the two distinct chemotactic mechanisms may be used to engineer nanomachines that move toward or away from regions with a specific substrate concentration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据