4.8 Article

Room-Temperature Skyrmions in an Antiferromagnet-Based Heterostructure

期刊

NANO LETTERS
卷 18, 期 2, 页码 980-986

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.7b04400

关键词

Skyrmion; antiferromagnet; exchange bias; zero field; room temperature; thin films

资金

  1. Spins and Heat in Nanoscale Electronic Systems (SHINES), an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [SC0012670]
  2. National Science Foundation [ECCS 1611570]
  3. CSPIN
  4. FAME, a Semiconductor Research Corporation program - MARCO
  5. DARPA
  6. Army Research Office
  7. Air Force Office of Scientific Research PECASE award
  8. NSF
  9. National Key R&D Program of China [2017YFA0206200, 2016YFA0302300]
  10. National Science Foundation of China [11774194]
  11. 1000 Youth talent program of China
  12. State Key Laboratory of Low-Dimensional Quantum Physics
  13. Beijing Advanced Innovation Center for Future Chip (ICFC)
  14. [W911NF-16-1-0472]

向作者/读者索取更多资源

Magnetic skyrmions as swirling spin textures with a nontrivial topology have potential applications as magnetic memory and storage devices. Since the initial discovery of skyrmions in non-centrosymmetric B20 materials, the recent effort has focused on exploring room-temperature skyrmions in heavy metal and ferromagnetic heterostructures, a material platform compatible with existing spintronic manufacturing technology. Here, we report the surprising observation that a room-temperature skyrmion phase can be stabilized in an entirely different class of systems based on antiferromagnetic (AFM) metal and ferromagnetic (FM) metal IrMn/CoFeB heterostructures. There are a number of distinct advantages of exploring skyrmions in such heterostructures including zero-field stabilization, tunable antiferromagnetic order, and sizable spin-orbit torque (SOT) for energy-efficient current manipulation. Through direct spatial imaging of individual skyrmions, quantitative evaluation of the interfacial Dzyaloshinskii-Moriya interaction, and demonstration of current-driven skyrmion motion, our findings firmly establish the AFM/FM heterostructures as a promising material platform for exploring skyrmion physics and device applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据