4.7 Article

Planet-disc interactions with discontinuous Galerkin methods using GPUs

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/sty1192

关键词

hydrodynamics; methods: numerical; planet-disc interactions; protoplanetary discs

向作者/读者索取更多资源

We present a two-dimensional Cartesian code based on high-order discontinuous Galerkin methods, implemented to run in parallel over multiple graphics processing units. A simple planet-disc setup is used to compare the behaviour of our code against the behaviour found using the FARGO3D code with a polar mesh. We make use of the time dependence of the torque exerted by the disc on the planet as a mean to quantify the numerical viscosity of the code. We find that the numerical viscosity of the Keplerian flow can be as low as a few 10(-8)r(2)Omega, r and Omega being respectively the local orbital radius and frequency, for fifth-order schemes and resolution of similar to 10(-2)r. Although for a single disc problem a solution of low numerical viscosity can be obtained at lower computational cost with FARGO3D (which is nearly an order of magnitude faster than a fifth-order method), discontinuous Galerkin methods appear promising to obtain solutions of low numerical viscosity in more complex situations where the flow cannot be captured on a polar or spherical mesh concentric with the disc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据