4.6 Article

Antioxidant and Cytoprotective Effects of Kukoamines A and B: Comparison and Positional Isomeric Effect

期刊

MOLECULES
卷 23, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/molecules23040973

关键词

positional isomeric effect; antioxidant mechanisms; cytoprotective effect; kukoamine A; kukoamine B; phenolic polyamine

资金

  1. National Nature Science Foundation of China [81573558]
  2. National Nature Science Foundation of Guangdong Province [2017A030312009]
  3. Guangdong Science and Technology Project [2017A050506043]

向作者/读者索取更多资源

In this study, two natural phenolic polyamines, kukoamine A and B, were comparatively investigated for their antioxidant and cytoprotective effects in Fenton-damaged bone marrow-derived mesenchymal stem cells (bmMSCs). When compared with kukoamine B, kukoamine A consistently demonstrated higher IC50 values in PTIO center dot-scavenging (pH 7.4), Cu2+-reducing, DPPH center dot-scavenging, center dot O-2 -scavenging, and center dot OH-scavenging assays. However, in the PTIO center dot-scavenging assay, the IC50 values of each kukoamine varied with pH value. In the Fe2+-chelating assay, kukoamine B presented greater UV-Vis absorption and darker color than kukoamine A. In the HPLC-ESI-MS/MS analysis, kukoamine A with DPPH center dot produced radical-adduct-formation (RAF) peaks (m/z 922 and 713). The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl (MTT) assay suggested that both kukoamines concentration-dependently increased the viabilities of Fenton-damaged bmMSCs at 56.5-188.4 mu M. However, kukoamine A showed lower viability percentages than kukoamine B. In conclusion, the two isomers kukoamine A and B can protect bmMSCs from Fenton-induced damage, possibly through direct or indirect antioxidant pathways, including electron-transfer, proton-transfer, hydrogen atom transfer, RAF, and Fe2+-chelating. Since kukoamine B possesses higher potentials than kukoamine A in these pathways, kukoamine B is thus superior to kukoamine A in terms of cytoprotection. These differences can ultimately be attributed to positional isomeric effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据