4.5 Article

A cluster of residues in the lipopolysaccharide exporter that selects substrate variants for transport to the outer membrane

期刊

MOLECULAR MICROBIOLOGY
卷 109, 期 4, 页码 541-554

出版社

WILEY
DOI: 10.1111/mmi.14059

关键词

-

资金

  1. National Science Foundation Graduate Research Fellowship
  2. National Institute of Allergy and Infectious Diseases [AI081059, AI109764]
  3. National Institute of General Medical Sciences [GM066174, GM100951]

向作者/读者索取更多资源

Most Gram-negative bacteria assemble lipopolysaccharides (LPS) on their surface to form a permeability barrier against many antimicrobials. LPS is synthesized at the inner membrane and then transported to the outer leaflet of the outer membrane. Although the overall LPS structure is conserved, LPS molecules can differ in composition at the species and strain level. Some bacteria also regulate when to modify phosphates on LPS at the inner membrane in order to become resistant to cationic antimicrobial peptides. The multi-protein Lpt trans-envelope machine, which transports LPS from the inner to the outer membrane, must therefore handle a variety of substrates. The most poorly understood step in LPS transport is how the ATP-binding cassette LptB(2)FG transporter extracts LPS from the inner membrane. Here, we define residue K34 in LptG as a site within the structural cavity of the Escherichia coli LptB(2)FG transporter that interacts electrostatically with phosphates on unmodified LPS. Alterations to this residue cause transport defects that are suppressed by the activation of the BasSR two-component signaling system, which results in modifications to the LPS phosphates. We also show this residue is part of a larger site in LptG that differentially contributes to the transport of unmodified and modified LPS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据