4.5 Article

Integrative gene ontology and network analysis of coronary artery disease associated genes suggests potential role of ErbB pathway gene EGFR

期刊

MOLECULAR MEDICINE REPORTS
卷 17, 期 3, 页码 4253-4264

出版社

SPANDIDOS PUBL LTD
DOI: 10.3892/mmr.2018.8393

关键词

coronary artery disease; gene ontology; disease ontology; protein-protein interaction; network topology; hubs

资金

  1. Bharati foundation
  2. Thrombosis Research Institute (TRI), London
  3. foundation Bey, Switzerland
  4. Tata Social Welfare Trust, India

向作者/读者索取更多资源

Coronary artery disease (CAD) is a major cause of mortality in India, more importantly the young Indians. Combinatorial and integrative approaches to evaluate pathways and genes to gain an improved understanding and potential biomarkers for risk assessment are required. Therefore, 608 genes from the CADgene database version 2.0, classified into 12 functional classes representing the atherosclerotic disease process, were analyzed. Homology analysis of the unique list of gene ontologies (GO) from each functional class gave 8 GO terms represented in 11 and 10 functional classes. Using disease ontology analysis 80 genes belonging to 8 GO terms, using FunDO suggested that 29 of them were identified to be associated with CAD. Extended network analysis of these genes using STRING version 9.1 gave 328 nodes and 4,525 interactions of which the top 5% had a node degree of 75 associated with pathways including the ErbB signaling pathway with epidermal growth factor receptor (EGFR) gene as the central hub. Evaluation of EFGR protein levels in age and gender-matched 342 CAD patients vs. 342 control subjects demonstrated significant differences [controls=149.76 +/- 2.47 pg/ml and CAD patients stratified into stable angina (SA)=161.65 +/- 3.40 pg/ml and myocardial infarction (MI)=171.51 +/- 4.26 pg/ml]. Logistic regression analysis suggested that increased EGFR levels exhibit 3-fold higher risk of CAD [odds ratio (OR) 3.51, 95% confidence interval [CI] 1.96-6.28, P0.001], upon adjustment for hypertension, diabetes and smoking. A unit increase in EGFR levels increased the risk by 2-fold for SA (OR 2.58, 95% CI 1.25-5.33, P=0.01) and 3.8-fold for MI (OR 3.82, 95% CI 1.94-7.52, P0.001) following adjustment. Thus, the use of ontology mapping and network analysis in an integrative manner aids in the prioritization of biomarkers of complex disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据