4.4 Article

Development of Ligand-based Big Data Deep Neural Network Models for Virtual Screening of Large Compound Libraries

期刊

MOLECULAR INFORMATICS
卷 37, 期 11, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/minf.201800031

关键词

deep learning; machine learning; ligand-based virtual screening; large compound library; EGFR

资金

  1. Shenzhen Municipal Development and Reform Commission Disciplinary Development Program for Chemical Biology
  2. Shenzhen Sci Tech Bureau [JCYJ20170413113448742]

向作者/读者索取更多资源

High-performance ligand-based virtual screening (VS) models have been developed using various computational methods, including the deep neural network (DNN) method. There are high expectations for exploration of the advanced capabilities of DNN to improve VS performance, and this capability has been optimally achieved using large data training datasets. However, their ability to screen large compound libraries has not been evaluated. There is a need for developing and evaluating ligand-based large data DNN VS models for large compound libraries. In this study, we developed ligand-based large data DNN VS models for inhibitors of six anticancer targets using 0.5 M training compounds. The developed VS models were evaluated by 10-fold cross-validation, achieving 77.9-97.8 % sensitivity, 99.9-100 % specificity, 0.82-0.98 Matthews correlation coefficient and 0.98-0.99 area under the curve, outperforming random forest models. Moreover, DNN VS models developed by pre-2015 inhibitors identified 50 % of post-2015 inhibitors with a 0.01-0.09 % false positive rate in screening 89 M PubChem compounds, also outperforming previous models. Experimental assays of the selected virtual hits of the EGFR inhibitor model led to reasonable novel structures of EGFR inhibitors. Our results confirmed the usefulness of the large data DNN model as a ligand-based VS tool to screen large compound libraries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据