4.6 Article

KDM6B Counteracts EZH2-Mediated Suppression of IGFBP5 to Confer Resistance to PI3K/AKT Inhibitor Treatment in Breast Cancer

期刊

MOLECULAR CANCER THERAPEUTICS
卷 17, 期 9, 页码 1973-1983

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-17-0802

关键词

-

类别

资金

  1. Agency for Science and Technology of Singapore (A*STAR)
  2. Margie Petersen Breast Cancer Program (JWCI)
  3. National Medical Research Council (NMRC) of Singapore [OFIRG16may081]

向作者/读者索取更多资源

Despite showing promise against PIK3CA-mutant breast cancers in preclinical studies, PI3K/AKT pathway inhibitors demonstrate limited clinical efficacy as monotherapy. Here, we found that histone H3K27me3 demethylase KDM6B-targeted IGFBP5 expression provides a protective mechanism for PI3K/AKT inhibitor-induced apoptosis in breast cancer cells. We found that overexpression of KDM6B and IGFBP5 in luminal breast cancer are positively associated with poorer disease outcomes. Mechanistically, KDM6B promotes IGFBP5 expression by antagonizing EZH2-mediated repression, and pharmacologic inhibition of KDM6B augments apoptotic response to PI3K/AKT inhibitor treatment. Moreover, the IGFBP5 expression is upregulated upon acquired resistance to the PI3K inhibitor GDC-0941, which is associated with an epigenetic switch from H3K27me3 to H3K27Ac at the IGFBP5 gene promoter. Intriguingly, GDC-0941-resistant breast cancer cells remained sensitive to KDM6B or IGFBP5 inhibition, indicating the dependency on the KDM6B-IGFBP5 axis to confer the survival advantage in GDC-0941-resistant cells. Our study reveals an epigenetic mechanism associated with resistance to targeted therapy and demonstrates that therapeutic targeting of KDM6Bmediated IGFBP5 expression may provide a useful approach to mitigate both intrinsic and acquired resistance to the PI3K inhibitor in breast cancer. (C) 2018 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据