4.5 Article

Taxol Induces Brk-dependent Prosurvival Phenotypes in TNBC Cells through an AhR/GR/HIF-driven Signaling Axis

期刊

MOLECULAR CANCER RESEARCH
卷 16, 期 11, 页码 1761-1772

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-18-0410

关键词

-

资金

  1. NIH [P30 CA77598]
  2. NIH/NCI [R01 CA138488, R01 CA192178]
  3. Tickle Family Land Grant Endowed Chair in Breast Cancer Research
  4. NIH/NCI F31 predoctoral fellowship [CA195877-01]
  5. NIH/NCI T32 training grant fellowship [CA009138]

向作者/读者索取更多资源

The metastatic cascade is a complex process that requires cancer cells to survive despite conditions of high physiologic stress. Previously, cooperation between the glucocorticoid receptor (GR) and hypoxia-inducible factors (HIF) was reported as a point of convergence for host and cellular stress signaling. These studies indicated p38 MAPK-dependent phosphorylation of GR on Ser134 and subsequent p-GR/HIF-dependent induction of breast tumor kinase (PTK6/Brk), as a mediator of aggressive cancer phenotypes. Herein, p-Ser134 GR was quantified in human primary breast tumors (n = 281) and the levels of p-GR were increased in triplenegative breast cancer (TNBC) relative to luminal breast cancer. Brk was robustly induced following exposure of TNBC model systems to chemotherapeutic agents (Taxol or 5-fluorouracil) and growth in suspension [ultra-low attachment (ULA)]. Notably, both Taxol and ULA resulted in upregulation of the Aryl hydrocarbon receptor (AhR), a known mediator of cancer prosurvival phenotypes. Mecha-nistically, AhR and GR copurified and following chemotherapy and ULA, these factors assembled at the Brk promoter and induced Brk expression in an HIF-dependent manner. Furthermore, Brk expression was upregulated in Taxol-resistant breast cancer (MCF-7) models. Ultimately, Brk was critical for TNBC cell proliferation and survival during Taxol treatment and in the context of ULA as well as for basal cancer cell migration, acquired biological phenotypes that enable cancer cells to successfully complete the metastatic cascade. These studies nominate AhR as a p-GR binding partner and reveal ways to target epigenetic events such as adaptive and stress-induced acquisition of cancer skill sets required for metastatic cancer spread. Implication: Breast cancer cells enlist intracellular stress response pathways that evade chemotherapy by increasing cancer cell survival and promoting migratory phenotypes. (C) 2018 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据