4.2 Article

Increase in Bacterial Resistance to Antibiotics after Cancer Therapy with Platinum-Based Drugs

期刊

MOLECULAR BIOLOGY
卷 52, 期 2, 页码 232-236

出版社

MAIK NAUKA/INTERPERIODICA/SPRINGER
DOI: 10.1134/S0026893317050077

关键词

cisplatin; oxaliplatin; SOS response; antibiotic resistance; ROS; antioxidants

资金

  1. Russian Scientific Foundation [16-16-04032]
  2. Russian Science Foundation [16-16-04032] Funding Source: Russian Science Foundation

向作者/读者索取更多资源

The use of platinum-based anticancer drugs is limited by both their side effects and their effect on normal microflora's metagenome. Drugs that possess mutagenic and genotoxic properties may cause mutations in microbial genomes that contribute to the emergence of resistance to antimicrobial preparations and the development of complications after chemotherapy. The effects of cisplatin and oxaliplatin on microorganisms were studied using bacterial biosensors-E. coli strains MG1655 pKatG-lux, which reacts to the generation of hydrogen peroxide; MG1655 pSoxS-lux, which reacts to the superoxide anion radical; and the MG1655 pColD-lux strain, which detects DNA damage. The biosensor tests demonstrated high levels of genotoxicity for both drugs and some differences in the spectrum of reactive oxygen species generated. Ascorbate reduced genotoxicity of cisplatin by 41%. Nonlethal doses of cisplatin induced a three- to sevenfold increase in the frequency of the mutations that confer the resistance of E. coli to rifampicin and ciprofloxacin. Ascorbate also reduced frequency of the mutations by 65%. Thus, the effect of these drugs was probably associated with the generation of reactive oxygen species and induction of SOS response. The risk of secondary antibiotic-resistant infections may be decreased by applying antioxidants and antimutagens. At the same time, these increases may also decrease the anti-tumoral action of these compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据