4.5 Article

Exercise-induced reductions in mitochondrial ADP sensitivity contribute to the induction of gene expression and mitochondrial biogenesis through enhanced mitochondrial H2O2 emission

期刊

MITOCHONDRION
卷 46, 期 -, 页码 116-122

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mito.2018.03.003

关键词

PGC-1 alpha; Mitochondria; Calcium/calmodulin-dependent protein kinase II; AMP-activated protein kinase; ADP sensitivity; Reactive oxygen species

资金

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada [400362]
  2. NSERC

向作者/读者索取更多资源

Acute exercise rapidly induces mitochondrial gene expression, however, the intracellular events regulating this process remain incompletely understood. The purpose of this study was to determine whether reductions in mitochondrial ADP sensitivity during exercise have a biological role in regulating mitochondrial-derived reactive oxygen species (ROS) production and the induction of mitochondrial biogenesis. Mitochondrial creatine kinase wildtype (WT) and knockout (KO) mice have divergent responses in ADP sensitivity during exercise, and we therefore used these mice to determine the relationship between mitochondrial ADP sensitivity, ROS production, and mitochondrial adaptations to exercise. In WT mice, acute exercise reduced mitochondrial ADP respiratory sensitivity and the ability of ADP to suppress ROS production, while increasing mitochondrial gene transcription (PGC-1 alpha, PGC-1 beta and PDK4). In stark contrast, in KO mice, exercise increased ADP sensitivity, reduced mitochondrial ROS emission, and did not induce gene transcription. Despite the divergence in mRNA responses, exercise similarly induced calcium/calmodulin-dependent protein kinase II (CaMKII) and AMP-activated protein kinase (AMPK) phosphorylation in WT and KO mice, however only WT mice were associated with redox stress (4HNE). These data implicate acute changes in ADP sensitivity in mitochondrial adaptations to exercise. To further examine this we chronically exercise trained mice. While training increased mitochondrial content and reduced ADP sensitivity in WT mice, KO mice did not exhibit adaptations to exercise. Combined, these data suggest that exercise-induced attenuations in mitochondrial ADP sensitivity mediate redox signals that contribute to the induction of acute and chronic mitochondrial adaptations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据