4.7 Article

Stochastic models of disordered mesoporous materials for small-angle scattering analysis and more

期刊

MICROPOROUS AND MESOPOROUS MATERIALS
卷 257, 期 -, 页码 62-78

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.micromeso.2017.08.009

关键词

Mesoporous materials; Small-angle scattering; Stochastic models; Pore size distribution; Tortuosity

资金

  1. Funds for Scientific Research (F.R.S.-FNRS, Belgium)

向作者/读者索取更多资源

Small-angle scattering of either x-rays (SAXS) or neutrons (SANS) is one of the few experimental techniques that can be used to study the structure of porous materials on the entire range from 1 to 100 nm, which makes it particularly suited for mesoporous materials. Because the information in scattering patterns is a correlation function, models are generally needed to convert data into structurally meaningful information. In this paper, we discuss five stochastic models that capture qualitatively different disordered structures, notably concerning the connectivity and the tortuosity of the phases. The models are two variants of the Boolean model, a dead leaves model, as well as two clipped Gaussian field models. The paper is illustrated with the SAXS analysis of a polymer xerogel, of a fumed silica as well as of a mesoporous alumina, and the fitted models are compared with pore size distributions derived from nitrogen adsorption. In the case of the xerogel and silica it is possible to pinpoint a single model that describes the structure best. In the case of the alumina, however, the scattering cannot discriminate the models. Even so, the models are useful because they enable one to quantitate the structural ambiguity of the SAXS data. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据