4.7 Article

Stress response of a clinical Enterococcus faecalis isolate subjected to a novel rill antimicrobial surface coating

期刊

MICROBIOLOGICAL RESEARCH
卷 207, 期 -, 页码 53-64

出版社

ELSEVIER GMBH
DOI: 10.1016/j.micres.2017.11.006

关键词

Antimicrobial; Silver; Stress; RNA sequencing; Enterococcus

资金

  1. German Aerospace Center (DLR) [50WB1166, 50WB1466]

向作者/读者索取更多资源

Emerging antibiotic resistance among pathogenic bacteria, paired with their ability to form biofilms on medical and technical devices, represents a serious problem for effective and long-term decontamination in health-care environments and gives rise to an urgent need for new antimicrobial materials. Here we present the impact of AGXX (R), a novel broad-spectrum antimicrobial surface coating consisting of micro-galvanic elements formed by silver and ruthenium, on the transcriptome of Enterococcus faecalis. A clinical E. faecalis isolate was subjected to metal stress by growing it for different periods in presence of the antimicrobial coating or silver-coated steel meshes. Subsequently, total RNA was isolated and next-generation RNA sequencing was performed to analyze variations in gene expression in presence of the antimicrobial materials with focus on known stress genes. Exposure to the antimicrobial coating had a large impact on the transcriptome of E. faecalis. After 24 min almost 1/5 of the E. faecalis genome displayed differential expression. At each time-point the cop operon was strongly up-regulated, providing indirect evidence for the presence of free Ag+-ions. Moreover, exposure to the anti-microbial coating induced a broad general stress response in E. faecalis. Genes coding for the chaperones GroEL and GroES and the Clp proteases, ClpE and ClpB, were among the top up-regulated heat shock genes. Differential expression of thioredoxin, superoxide dismutase and glutathione synthetase genes indicates a high level of oxidative stress. We postulate a mechanism of action where the combination of Ag+-ions and reactive oxygen species generated by AGXX (R) results in a synergistic antimicrobial effect, superior to that of conventional silver coatings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据