4.2 Article

Reduced Susceptibility to Antiseptics Is Conferred by Heterologous Housekeeping Genes

期刊

MICROBIAL DRUG RESISTANCE
卷 24, 期 2, 页码 105-112

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/mdr.2017.0105

关键词

UDP-glucose 4-epimerase (galE); enoyl-acyl carrier protein reductase; oral metagenome; antiseptic resistance; fabI

资金

  1. UCL IMPACT studentship at UCL
  2. Seedcorn Programme at the Animal and Plant Health Agency
  3. Erasmus programme
  4. Harry Smith Vacation Studentship from the Microbiology Society

向作者/读者索取更多资源

Antimicrobial resistance is common in the microbial inhabitants of the human oral cavity. Antimicrobials are commonly encountered by oral microbes as they are present in our diet, both naturally and anthropogenically, and also used in oral healthcare products and amalgam fillings. We aimed to determine the presence of genes in the oral microbiome conferring reduced susceptibility to common antimicrobials. From an Escherichia coli library, 12,277 clones were screened and ten clones with reduced susceptibility to triclosan were identified. The genes responsible for this phenotype were identified as fabI, originating from a variety of different bacteria. The gene fabI encodes an enoyl-acyl carrier protein reductase (ENR), which is essential for fatty acid synthesis in bacteria. Triclosan binds to ENR, preventing fatty acid synthesis. By introducing the inserts containing fabI, ENR is likely overexpressed in E. coli, reducing the inhibitory effect of triclosan. Another clone was found to have reduced susceptibility to cetyltrimethylammonium bromide and cetylpyridinium chloride. This phenotype was conferred by a UDP-glucose 4-epimerase gene, galE, homologous to one from Veillonella parvula. The product of galE is involved in lipopolysaccharide production. Analysis of the E. coli host cell surface showed that the charge was more positive in the presence of galE, which likely reduces the binding of these positively charged antiseptics to the bacteria. This is the first time galE has been shown to confer resistance against quaternary ammonium compounds and represents a novel, epimerase-based, global cell adaptation, which confers resistance to cationic antimicrobials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据