4.5 Review

Interactions of Alumina-Based and Magnesia-Based Refractories with Iron Melts and Slags: A Review

向作者/读者索取更多资源

A novel flash ironmaking technology (FIT) based on the direct reduction of iron ore concentrate with a reductant gas (such as hydrogen, natural gas, coal gas, or a combination thereof) in a flash furnace is being developed at the University of Utah. This technology which is undergoing large-scale laboratory testing aims at overcoming the limitations of blast furnace ironmaking by bypassing the problematic pelletization/sintering and cokemaking steps.[1-5] Refractory selection is expected to play an important step in the development of FIT and its proposed scale-up. For nominating an appropriate refractory for the FIT, understanding the interactions of candidate refractories with iron/iron oxide and slags under H-2/CO/CO2/H2O environments is necessary. This work is undertaken to review the existing literature on the interactions of important refractories with iron melts and relevant slags with an emphasis on two of the most commonly used refractories in ironmaking and steelmaking applications: the alumina-based refractories (used widely in blast furnace operations) and the magnesia-based refractories (used extensively in primary as well as secondary steelmaking). First, a comprehensive review on the interactions of alumina-based refractories with iron melts and slags has been done. Next the existing literature on the interactions of magnesia-based refractories with iron melts and relevant slags has been reviewed. Summaries have been included after each section and sub-section along with comments and critical insights from the authors. Finally, in the concluding remarks the differences in operating conditions between existing iron and steelmaking practices and the novel FIT have been highlighted. On the basis of these differences, it has been argued that the results and conclusions available from previous studies on refractory-metal-slag interactions are of little significance to flash ironmaking. Thus, there exists a need to carry out laboratory experiments for evaluating refractory performance in flash ironmaking under conditions relevant to the current process (FIT).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据