4.6 Article Proceedings Paper

Competing Modes for Crack Initiation from Non-metallic Inclusions and Intrinsic Microstructural Features During Fatigue in a Polycrystalline Nickel-Based Superalloy

出版社

SPRINGER
DOI: 10.1007/s11661-018-4780-3

关键词

-

资金

  1. GE Global Research
  2. Center of Excellence on Integrated Materials Modeling (CEIMM) at Johns Hopkins University [FA9550-12-1-0445]
  3. AFOSR/Aerospace Materials for Extreme Environments Program
  4. AFRL/RX

向作者/读者索取更多资源

Cyclic fatigue experiments in the high and very high cycle fatigue regimes have been performed on a Rene 88DT polycrystalline nickel-based superalloy. The microstructural configurations that favor early strain localization and fatigue crack initiation at high temperature from 400 degrees C to 650 degrees C have been investigated. Competing failure modes are observed in the high to the very high cycle fatigue regime. Fatigue cracks initiate from non-metallic inclusions and from intrinsic internal microstructural features. Interestingly, as stresses are reduced into the very high cycle regime, there is a transition to initiation only at crystallographic facets. At higher stress in the high cycle fatigue regime, a significant fraction of specimens initiate cracks at non-metallic inclusions. This transition is analyzed with regard to microstructural features that favor strain localization and accumulate damage early during cycling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据