4.5 Article

Black hole entanglement and quantum error correction

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 10, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP10(2013)107

关键词

Statistical Methods; Black Holes

资金

  1. Spinoza Grant of the Dutch Science Foundation (NWO)
  2. Advanced Grant by the European Research Council (ERC)
  3. Foundation for Fundamental Research on Matter (FOM)
  4. NSF [PHY-0756966]
  5. Division Of Physics
  6. Direct For Mathematical & Physical Scien [0756966] Funding Source: National Science Foundation

向作者/读者索取更多资源

It was recently argued in [1] that black hole complementarity strains the basic rules of quantum information theory, such as monogamy of entanglement. Motivated by this argument, we develop a practical framework for describing black hole evaporation via unitary time evolution, based on a holographic perspective in which all black hole degrees of freedom live on the stretched horizon. We model the horizon as a unitary quantum system with finite entropy, and do not postulate that the horizon geometry is smooth. We then show that, with mild assumptions, one can reconstruct local effective field theory observables that probe the black hole interior, and relative to which the state near the horizon looks like a local Minkowski vacuum. There construction makes use of the formalism of quantum error correcting codes, and works for black hole states who seen tanglement entropy does not yet saturate the Bekenstein-Hawking bound. Our general framework clarifies the black hole final state proposal, and allows a quantitative study of the transition into the firewall regime of maximally mixed black hole states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据