4.7 Review

Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases

期刊

MEDICINAL RESEARCH REVIEWS
卷 38, 期 6, 页码 1916-1973

出版社

WILEY
DOI: 10.1002/med.21502

关键词

chaperones; diseases; proteasome; proteostasis; ubiquitin

资金

  1. Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India [EMR/2016/000716]

向作者/读者索取更多资源

Proteins actively participate in a wide range of cellular physiological functions. But aggregation of proteins results in cytotoxicity, and unwanted aggregation of misfolded proteins often causes many diseases. During abnormal protein aggregation events, cells try to cope against such deleterious consequences because of the remarkable functional attempts of two distinct proteolytic mechanisms. These tightly regulative and signaling mechanisms are autophagy pathway and ubiquitin proteasome system. Proteasome complex system holds the elimination capacity of intracellular aberrant protein aggregation. Despite the considerable progress that has been achieved, which elucidates wide function and diverse roles of proteasome system, still several crucial problems remain unanswered. For example, how the complex proteasomes assembly and their interactive pathways determine the precise sense of several proteotoxic insults, which can severely affect the cell survival and homeostasis? The specific degradation of various aberrant proteins that can disturb cellular homeostasis is achieved by proper proteasome functionality, which is yet another unclear and critical challenge. Therefore, a better understanding of the various cellular signaling mechanisms composing the proteasome machinery carries broad therapeutic implications linked with proteopathies. This article signifies the urgent need, which is now crucial for us to improve our understanding of the proteasome architecture, structure, and functions that span multiple level strategies from the molecular level to the cellular level. This systematic in-depth information of proteasome may be helpful in the near future to design a new molecular framework based on intrinsic and extrinsic cellular mechanisms that drive the assembly of proteasome to induce cellular survival against proteostasis imbalance and disease conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据