4.5 Article

Finite element analysis and design of an interspinous device using topology optimization

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11517-018-1838-8

关键词

Coflex-F; Topology optimization; Lumbar interspinous implant; Finite element analysis; Spine; Biomechanics

资金

  1. National Natural Science Foundation of China [51275082, 11272273]

向作者/读者索取更多资源

Recently, interspinous stabilization with Coflex-F implant has become an alternative to treat lumbar spinal stenosis (LSS). However, little attention focused on modifying the structure of the device to obtain the better clinic application. The purpose of this study was to design a new interspinous implant using topology optimization methods and evaluate its biomechanical performance. The finite element models of healthy lumbar spine and surgical lumbar spine with Coflex-F and Coflex-NEW (the new designed implant) were constructed. Finite element analysis was applied to each of the three models. The interspinous implant structure after topology optimization was remodeled at an 8% reduced volume compared with the Coflex-F device, and they can both provide stability in all motion at the surgical segment. Additionally, the advantage of Coflex-NEW was that it can decrease the von Mises stress of the implant structure in flexion, extension, torsion, and the spinous process in flexion, extension, and bending. The stress in spinous process with Coflex-NEW was well-distributed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据