4.7 Article

Mechanical modeling of coupled plasticity and phase transformation effects in a martensitic high strength bearing steel

期刊

MECHANICS OF MATERIALS
卷 117, 期 -, 页码 41-57

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mechmat.2017.10.001

关键词

Transformation induced plasticity; Stress induced phase transformation; Strain induced phase transformation; Strength differential effect; Nonassociated flow rule

资金

  1. SKF ERC

向作者/读者索取更多资源

The stress and strain induced solid to solid phase transformation of retained austenite in a martensitic high strength bearing steel has been studied. Monotonic tension experiments that were carried out at different temperatures using this high strength steel showed that not only the strain induced but also the stress induced phase change plays a crucial role in the phase transformation of retained austenite to martensite. In the material model, plastic deformation was defined using the Drucker Prager yield surface through a nonassociated flow rule accompanied by nonlinear kinematic and isotropic hardening. The hardening was coupled with stress and strain induced phase transformations. A nonlinear elastic effect based on elastic dilation was included in the constitutive model by extending the bulk modulus with a second order term. For the finite element analysis, the material model was written as a user defined material subroutine (UMAT). The numerical simulations were done using ABAQUS and compared to monotonic tension, compression and cyclic experiments. The results showed that the strength differential effect and the volumetric change under loading are closely related to the transformation of retained austenite to martensite. At low temperatures the effect of stress induced phase transformation on yield strength was noticeable. It was concluded that at certain temperatures both strain and stress induced phase transformations significantly affect mechanical behavior of the high strength steel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据