4.6 Article

Novel shear deformation model for moderately thick and deep laminated composite conoidal shell

期刊

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15397734.2017.1422433

关键词

Composite; conoidal shell; finite element method

向作者/读者索取更多资源

This article presents a novel mathematical model for moderately thick and deep laminated composite conoidal shell. The zero transverse shear stress at top and bottom of conoidal shell conditions is applied. Novelty in the present formulation is the inclusion of curvature effect in displacement field and cross curvature effect in strain field. This present model is suitable for deep and moderately thick conoidal shell. The peculiarity in the conoidal shell is that due to its complex geometry, its peak value of transverse deflection is not at its center like other shells. The C-1 continuity requirement associated with the present model has been suitably circumvented. A nine-node curved quadratic isoparametric element with seven nodal unknowns per node is used in finite element formulation of the proposed mathematical model. The present model results are compared with experimental, elasticity, and numerical results available in the literature. This is the first effort to solve the problem of moderately thick and deep laminated composite conoidal shell using parabolic transverse shear strain deformation across the thickness of conoidal shell. Many new numerical problems are solved for the static study of moderately thick and deep laminated composite conoidal shell considering 10 different practical boundary conditions, four types of loadings, six different hl/hh (minimum rise/maximum rise) ratios, and four different laminations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据