4.7 Article

Integrating angle-frequency domain synchronous averaging technique with feature extraction for gear fault diagnosis

期刊

MECHANICAL SYSTEMS AND SIGNAL PROCESSING
卷 99, 期 -, 页码 711-729

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ymssp.2017.07.001

关键词

Feature extraction; Gear fault diagnosis; Non-stationary operation; Signal processing; Synchronous averaging

资金

  1. U.S. National Science Foundation [CMMI - 1300236]
  2. Directorate For Engineering
  3. Div Of Civil, Mechanical, & Manufact Inn [1300236] Funding Source: National Science Foundation

向作者/读者索取更多资源

Gear fault diagnosis relies heavily on the scrutiny of vibration responses measured. In reality, gear vibration signals are noisy and dominated by meshing frequencies as well as their harmonics, which oftentimes overlay the fault related components. Moreover, many gear transmission systems, e.g., those in wind turbines, constantly operate under non-stationary conditions. To reduce the influences of non-synchronous components and noise, a fault signature enhancement method that is built upon angle-frequency domain synchronous averaging is developed in this paper. Instead of being averaged in the time domain, the signals are processed in the angle-frequency domain to solve the issue of phase shifts between signal segments due to uncertainties caused by clearances, input disturbances, and sampling errors, etc. The enhanced results are then analyzed through feature extraction algorithms to identify the most distinct features for fault classification and identification. Specifically, Kernel Principal Component Analysis (KPCA) targeting at nonlinearity, Multilinear Principal Component Analysis (MPCA) targeting at high dimensionality, and Locally Linear Embedding (LLE) targeting at local similarity among the enhanced data are employed and compared to yield insights. Numerical and experimental investigations are performed, and the results reveal the effectiveness of angle-frequency domain synchronous averaging in enabling feature extraction and classification. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据