4.6 Article

Elimination of dibenzothiophene from transportation fuel by combined photocatalytic and adsorptive method

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mssp.2018.07.017

关键词

Dibenzothiophene; Transportation fuel; Aromatic organosulfur compounds; Photocatalyst; ZnO, FSM-16; MCM-41

向作者/读者索取更多资源

Photocatalytic degradation of dibenzothiophene was studied by use of ZnO/FSM-16 photocatalyst under UV and visible light irradiations. The photocatalyst was prepared by incorporation of ZnO into the FSM-16 nano-sized particles through reaction with zinc acetate solution followed by calcination process. The diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) analysis indicated that immobilization of ZnO on the surface of catalyst support lowered its bang gap energy to visible region and enhanced its degradation efficiency by lowering electron/hole recombination. The nanocomposite was characterized by XRD, FTIR, and BET techniques. It was concluded that the surface area of the synthesized photocatalyst was sufficiently high to promote the adsorption of the pollutant and subsequently enhanced the degradation process. The effect of different experimental parameters and the presence of H2O2 and some organic scavenger on degradation efficiency was studied. The results showed that under optimized conditions 80% of dibenzothiophene was degraded. The catalyst retained its activity after six regeneration cycles. The degradation products including the sulfur containing compounds were efficiently removed by use of MCM-41 adsorbent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据