4.7 Article

Microstructures and mechanical properties of TixNbMoTaW refractory high entropy alloys

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2017.12.004

关键词

High entropy alloy; Alloy design; Microstructure; Mechanical property; Thermodynamic calculation

资金

  1. National Natural Science Foundation of China (NSFC) [51571127, 51271095]

向作者/读者索取更多资源

Refractory high-entropy alloys (RHEAs) are newly developed candidate materials for high-temperature applications. Among the existing RHEAs, NbMoTaW RHEA possesses the best mechanical properties with combined high strength, excellent thermal stability and softening resistance at elevated temperatures. However, the NbMoTaW RHEA is quite brittle at room temperature, which would restrict its application as structural material. Here, TixNbMoTaW RHEAs were developed by alloying Ti in the NbMoTaW RHEA. It shows that the room temperature ductility of the RHEAS increases from 1.9% of the NbMoTaW RHEA to 11.5% of the TiNbMoTaW RHEA, and the yield strength increases from 996 MPa of the NbMoTaW RHEA to 1455 MPa of the TiNbMoTaW RHEA. In addition, the TixNbMoTaW RHEAS keep stable single BCC structure up to their melt points. The present result indicates that Ti addition could effectively enhance both the ductility and strength of the NbMoTaW RHEA. The combined performance of superior mechanical properties and high thermal stability of the TixNbMoTaW RHEAs promises them an important role in engineering applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据