4.3 Article

Simple fabrication of rough halloysite nanotubes coatings by thermal spraying for high performance tumor cells capture

出版社

ELSEVIER
DOI: 10.1016/j.msec.2017.12.030

关键词

Thermal spray; Halloysite; Roughness; Tumor cells; Capture yield; Cytocompatibility

资金

  1. National High Technology Research and Development Program of China [2015AA020915]
  2. National Natural Science Foundation of China [51473069, 51502113]
  3. Guangdong Natural Science Funds for Distinguished Young Scholar [S2013050014606]
  4. Science and Technology Planning Project of Guangdong Province [2014A020217006]
  5. Guangdong Special Support Program [2014TQ01C127]
  6. Pearl River S&T Nova Program of Guangzhou [201610010026]
  7. Science and Technology Planning Project of Guangzhou [2017010160233]

向作者/读者索取更多资源

Here, we reported a fast, low-cost, and effective fabrication method of large-area and rough halloysite nanotubes (HNTs) coatings by thermal spraying of HNTs ethanol dispersions. A uniform HNTs coating with high transparence is achieved with tailorable surface roughness and thickness. Compared with normal cells, the tumor cells can be captured effectively with high capture yield by the HNTs coatings (expect HeLa cells), which is attributed to the enhanced topographic interactions between HNTs coating and cancer cells. HNTs coating formed from 2.5% ethanol dispersions shows the highest tumor cells capture yeild (90%), which is related to the appropriate roughness and anti-EpCAM conjugation. The capture yield of HNTs coating towards MCF-7 cells can be further improved to 93% within 2 h under dynamic shear using a peristaltic pump. The capture yield increases with the incubation time, and the flow rate with 1.25 mL/min leads to the maximum capture yield. The HNTs coatings are also effective for capture of tumor cells spiked in artificial blood samples and blood samples from patients with metastatic breast cancer. More than 90% targeted MCF-7 cells and very small amounts of white blood cells are captured by the anti-EpCAM conjugated HNTs coatings from a blood sample. HNTs are further loaded anticancer drug doxorubicin (DOX) and then thermally sprayed into coatings. The MCF-7 cells captured on DOX loaded HNTs coating display significant membrane rupture characteristic and only 3% cell viability after 16 h. The high capture efficiency of tumor cells by HNTs coating fabricated by the thermal spraying method makes them show promising applications in clinical circulating tumor cells capture for early diagnosis and monitoring of cancer patients. The high killing ability of the DOX loaded HNTs coating can also be designed as an implantable therapeutic device for preventing tumor metastasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据