4.3 Article

One-step fabrication of functionalized poly(etheretherketone) surfaces with enhanced biocompatibility and osteogenic activity

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.msec.2018.03.003

关键词

Polyetheretherketone; Titanium dioxide electrospun; Methacrylated hyaluronic acid; Biocomposites; Osteogenic differentiation

资金

  1. National Natural Science Foundation of China [21474037, 31470905]
  2. Ministry of Education of China [20130061110019]

向作者/读者索取更多资源

Polyetheretherketone (PEEK) has an elastic modulus similar to that of the bone; however, its use as a material for bone repair is limited by bio-inert surface chemistry and poor osteogenesis-inducing capacity. To address this issue, the PEEK surface was activated by ultraviolet radiation-induced grafting of methacrylated hyaluronic acid (MeHA) and titanium dioxide (TiO2) nanofibers via a one-step process. The modified PEEK surface was characterized by X-ray photoelectron and Fourier-transform infrared spectroscopy, and the extent of surface modification was evaluated by measuring static contact angles. Atomic force microscopy revealed that the PEEK surface grafted with electrospun TiO2 had abundant nanofibers and a roughness that was comparable to that of human cortical bone. In vitro experiment, rat bone mesenchymal stem cells showed increased adhesion, proliferation, and osteogenic differentiation capacity on TiO2-modified as compared to unmodified PEEK. Thus, PEEK that is surface-modified with electrospun TiO2 and MeHA has enhanced biocompatibility and can be an effective material for use in orthopedic implants and medical devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据