4.6 Article

Effect of different functionalized carbon nanostructures as fillers on the physical properties of biocompatible poly(L-lactic acid) composites

期刊

MATERIALS CHEMISTRY AND PHYSICS
卷 214, 期 -, 页码 265-276

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2018.04.042

关键词

Nano composites; Carbon nanostructures; Biocompatibility; Electrical properties; Mechanical properties; Thermal properties; Electro-spinning

资金

  1. University of Padova [PRAT2015 CPDA151948, 05BIRD2016-UNIPD]

向作者/读者索取更多资源

Composites of carbon nanostructures (CNSs) and biocompatible polymers are promising materials for a series of advanced technological applications, ranging from biomedicine and bioelectronics to smart packaging and soft robotics. In this work, we present three types of organic-functionalized CNSs, namely p-methoxyphenyl functionalized multi-walled carbon nanotubes, carbon nanohorns and reduced graphene oxide, used as nanofillers for the preparation of homogeneous and well-dispersed composites of poly(L-lactic acid), a biocompatible and biodegradable FDA-approved polymer. A thorough characterization of the composites is given in terms of calorimetric response, electrical and mechanical properties. Significant differences are observed among the different types of CNS nanofillers, underlying the key role played by the nanoscale shape and distribution of the components in driving the macroscopic behavior of the composite material. Surface properties are probed through advanced atomic force microscopy techniques, on both flat substrates (films) and confined systems (nanofibers). All these composites proved to be biocompatible and to support as scaffolds the proliferation of human neuronal precursor cell line SH-SY5Y, opening the route to a future comparative analysis on their ability to boost neuronal differentiation. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据