4.7 Article

Microstructure and mechanical behavior of hot-work tool steels processed by Selective Laser Melting

期刊

MATERIALS CHARACTERIZATION
卷 137, 期 -, 页码 50-57

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.matchar.2018.01.015

关键词

Synchrotron X-ray diffraction; Additive manufacturing; Selective Laser Melting; H11; Tool steels; Microscopy

向作者/读者索取更多资源

The present study is aimed at identifying and testing high-strength alloys for tooling applications featuring suitable processability for laser-based additive manufacturing technologies. The microstructure and mechanical properties of the H11 hot-work tool steel and a leaner version of the same alloy (L-H11) processed by Selective Laser Melting were assessed as a function of specific microstructural conditions obtained by performing different heat treatments. Tempering was performed on quenched alloys or simply from as built material. The rapidly solidified microstructures revealed able to respond directly to precipitation hardening treatment without performing any prior solution annealing. The microstructure of the as-built alloys revealed characterized by alpha-Fe dendritic cells decorated at boundaries by C-rich gamma-Fe regions. Air quenching was responsible for the transformation of the solidification cells into lath martensitic structures and for the formation of the M3C phase, which transformed into more complex carbide species on tempering. The hardness of quenched and tempered H11 steel is similar to that obtained by processing the alloy with conventional routes, and the final hardness gap between the two SLM processed H11 and L-H11 alloys treated according to optimal tempered condition was limited to 62 HV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据