3.8 Proceedings Paper

Quantum metrology with cold atomic ensembles

出版社

E D P SCIENCES
DOI: 10.1051/epjconf/20135703004

关键词

-

向作者/读者索取更多资源

Quantum metrology uses quantum features such as entanglement and squeezing to improve the sensitivity of quantum-limited measurements. Long established as a valuable technique in optical measurements such as gravitational-wave detection, quantum metrology is increasingly being applied to atomic instruments such as matter-wave interferometers, atomic clocks, and atomic magnetometers. Several of these new applications involve dual optical/atomic quantum systems, presenting both new challenges and new opportunities. Here we describe an optical magnetometry system that achieves both shot-noise-limited and projection-noise-limited performance, allowing study of optical magnetometry in a fully-quantum regime [1]. By near-resonant Faraday rotation probing, we demonstrate measurement-based spin squeezing in a magnetically-sensitive atomic ensemble [2-4]. The versatility of this system allows us also to design metrologically-relevant optical nonlinearities, and to perform quantum-noise-limited measurements with interacting photons. As a first interaction-based measurement [5], we implement a non-linear metrology scheme proposed by Boixo et al. with the surprising feature of precision scaling better than the 1/N Heisenberg limit [6].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据