4.2 Article

Model-based approach for estimating biomass and organic carbon in tropical seagrass ecosystems

期刊

MARINE ECOLOGY PROGRESS SERIES
卷 596, 期 -, 页码 61-70

出版社

INTER-RESEARCH
DOI: 10.3354/meps12597

关键词

Blue carbon; Carbon sink; Stepwise structural model; Marine vegetation; Non-destructive method

资金

  1. Higher Education Research Promotion
  2. Thailand's Education Hub for Southern Region of ASEAN Countries Project Office of the Higher Education Commission
  3. Graduate School of Prince of Songkla University (PSU)
  4. PSU [SCI610084M]

向作者/读者索取更多资源

Seagrass ecosystems play a vital role in climate change mitigation as they are globally significant carbon sinks and are responsible for 18% of marine carbon sequestration. However, their increasingly high rates of loss and degradation over the last decade have necessitated the development of effective and non-destructive ways to estimate biomass and, consequentially, stored organic carbon. In this study, we explore cost-effective ways to estimate total organic carbon storage in monospecific (Enhdlus acoroides) and mixed (E. acoroides and Thalassia hemprichii or Cymodocea serrulata) seagrass ecosystems of Southeast Asia using a modeling approach. The model can be divided into 3 units: (1) biomass prediction, (2) carbon in living vegetation prediction, and (3) carbon in sediment prediction. A series of linear regression relationships linking the units, in which the results of the previous unit represent the predictor for the subsequent unit, was used to obtain information about seagrass biomass (above- and belowground), organic carbon in the living vegetation, and organic carbon in the sediment. All of the modeling units of monospecific patches had higher and more significant correlations between the predictor and response variables compared to those of mixed patches. Following the linked units, the piedicted organic carbon on a landscape scale had a small margin of error for both monospecific and mixed patches. Although the models are applicable only for certain species, they improve the cost effectiveness of the data collection and can be easily applied over a larger spatial scale. The models provide the essential knowledge required to better understand and manage seagrass ecosystems and to more effectively address climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据