4.7 Article

Design and Regulation of Lower Disorder-to-Order Transition Behavior in the Strongly Interacting Block Copolymers

期刊

MACROMOLECULES
卷 51, 期 6, 页码 2302-2311

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.8b00227

关键词

-

资金

  1. National Natural Science Foundation of China [21774111, 21674097]

向作者/读者索取更多资源

Lower disorder-to-order transition (LDOT) phase behavior is seldom observed in block copolymers (BCPs). Design of LDOT BCPs is important for broadening the applications and improving the high temperature properties of BCPs. In this work, the LDOT phase behavior was first achieved in the strongly interacting BCPs consisting of poly(ethylene oxide) (PEO) and poly(ionic liquid) (PIL) blocks (EOm-b-(IL-x)(n), X: counterion) by introducing two extra strong forces (hydrogen bondingand Coulombic interaction) with different temperature dependences. It is also found that the LDOT phase behavior of the EOm-b-(IL-x)(n) BCPs can be regulated by molecular weight (related to mixing entropy), counterion, and salt doping. Increasing counterion size and salt content shifts the disorder-to-order transition temperature (T-DOT) to higher temperature, whereas a higher molecular weight leads to a lower T-DOT. Based on our findings, some general rules for design of LDOT phase behavior in the strongly interacting BCPs were proposed. Moreover, the conductivity of the EOm-b-(IL-X)(n) BCPs was correlated with the LDOT phase behavior. A remarkable increase in conductivity after LDOT, i.e., a thermo-activated transition, is observed for the EOm-b-(IL-X)(n), BCPs, which can be attributed to the cooperative effects of temperature rising and LDOT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据