4.7 Article

High Performance Near-Infrared (NIR) Photoinitiating Systems Operating under Low Light Intensity and in the Presence of Oxygen

期刊

MACROMOLECULES
卷 51, 期 4, 页码 1314-1324

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.8b00051

关键词

-

资金

  1. ANR agency [ANR-15-CE08-0012]
  2. NSERC

向作者/读者索取更多资源

Photopolymerization under near-infrared (NIR) light is challenging due to the low energy of the absorbed photon but, if successful, presents significant advantages. For example, this lower energy wavelength is safer than UV light that is currently the standard photocuring light source. Also, NIR allows for a deeper light penetration within the material and therefore resulting in a more complete curing of thicker materials containing fillers for access to composites. In this study, we report the use of three component systems for the NIR photopolymerization of methacrylates: (1) a dye used as a photosensitizer in the NIR range, (2) an iodonium salt as a photoinitiator for the free radical polymerization of the (meth)acrylates, and (3) a phosphine to prevent polymerization inhibition due to the oxygen and to regenerate the dye upon irradiation. Several NIR-absorbing dyes such as a cyanine borate and a silicon phthalocyanine are presented and studied. Systems using borate dyes resulted in methacrylate monomer conversion over 80% in air. We report three types of irradiation system: low-power LED at 660 and 780 nm as well as a higher power laser diode at 785 nm. The excellent performance reported in this work is due to the crucial role of the added phosphine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据