4.5 Article

A cytotoxicity, optical spectroscopy and computational binding analysis of 4-[3-acetyl-5-(acetylamino)-2-methyl-2,3-dihydro-1,3,4-thiadiazole-2-yl]phenyl benzoate in calf thymus DNA

期刊

LUMINESCENCE
卷 33, 期 4, 页码 731-741

出版社

WILEY
DOI: 10.1002/bio.3470

关键词

fluorescence spectroscopy; FRET; molecular docking; molecular dynamics; time resolved emission spectroscopy

资金

  1. Board of Research in Nuclear Sciences
  2. Department of Atomic Energy
  3. DST-PURSE [7.1.3.69]

向作者/读者索取更多资源

In this study the interaction mechanism between newly synthesized 4-(3-acetyl-5-(acetylamino)-2-methyl-2, 3-dihydro-1,3,4-thiadiazole-2-yl) phenyl benzoate (thiadiazole derivative) anticancer active drug with calf thymus DNA was investigated by using various optical spectroscopy techniques along with computational technique. The absorption spectrum shows a clear shift in the lower wavelength region, which may be due to strong hypochromic effect in the ctDNA and the drug. The results of steady state fluorescence spectroscopy show that there is static quenching occurring while increasing the thiadiazole drug concentration in the ethidium bromide-ctDNA system. Also the binding constant (K), thermo dynamical parameters of enthalpy change (Delta H degrees), entropy change (Delta S degrees) Gibbs free energy change (Delta G degrees) were calculated at different temperature (293K, 298K) and the results are in good agreement with theoretically calculated MMGBSA binding analysis. Time resolved emission spectroscopy analysis clearly explains the thiadiazole derivative competitive intercalation in the ethidium bromide-ctDNA system. Further, molecular docking studies was carried out to understand the hydrogen bonding and hydrophobic interaction between ctDNA and thiadiazole derivative molecule. In addition the docking and molecular dynamics charge distribution analysis was done to understand the internal stability of thiadiazole derivative drug binding sites of ctDNA. The global reactivity of thiadiazole derivative such as electronegativity, electrophilicity and chemical hardness has been calculated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据