4.6 Article

The role of magmatic and post-magmatic hydrothermal processes on rare-earth element mineralization: A study of the Bachu carbonatites from the Tarim Large Igneous Province, NW China

期刊

LITHOS
卷 314, 期 -, 页码 71-87

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.lithos.2018.05.023

关键词

Carbonatite; REE deposit; Fractional crystallization; LA-ICP-MS; Tarim Large Igneous Province

资金

  1. National Natural Science Foundation of China [41472060, 41390442, 41702064]

向作者/读者索取更多资源

The contribution of magmatic and hydrothermal processes to rare earth element (REE) mineralization of carbonatites remains an area of considerable interest. With the aim of better understanding REE mineralization mechanisms, we conducted a detailed study on the petrology, mineralogy and C-O isotopes of the Bachu carbonatites, NW China. The Bachu carbonatites are composed predominantly of magnesiocarbonatite with minor calciocarbonatite. The two types of carbonatite have primarily holocrystalline textures dominated by dolomite and calcite, respectively. Monazite-(Ce) and bastnasite-(Ce), the major REE minerals, occur as euhedral grains and interstitial phases in the carbonatites. Melt inclusions in the dolomite partially rehomogenize at temperatures above 800 degrees C, and those in apatite have homogenization temperatures (T-h) ranging from 645 to 785 degrees C. Oxygen isotope ratios of the calciocarbonatite intrusions (delta O-18(V-SMOW) = 6.4 parts per thousand to 8.3 parts per thousand), similar to the magnesiocarbonatites, indicate the parental magma is mantle-derived, and that they may derive from a more evolved stage of carbonatite fractionation. The magnesiocarbonatites are slightly enriched in LREE whereas calciocarbonatites have higher HREE concentrations. Both dolomite and calcite have low total REE (TREE) contents ranging from 112 to 436 ppm and 88 to 336 ppm, respectively, much lower than the bulk rock composition of the carbonatites (371 to 36,965 ppm). Hence, the fractional crystallization of carbonates is expected to elevate REE concentrations in the residual magma. Rocks from the Bachu deposit with the highest TREE concentration (up to 20 wt%) occur as small size (2 mm to 3 cm) red rare earth-rich veins (RRV) with barite + celestine + fluorapatite + monazite-(Ce) associations. These rocks are interpreted to have a hydrothermal origin, confirmed by the fluid inclusions in barite with Th in the range 198-267 degrees C. Hydrothermal processes may also explain the existence of interstitial textures in the carbonatites with similar mineral assemblages. The C-O isotopic compositions of the RRV (delta C-13(V-PDB) = 3.6 to 4.3%., delta O-18(V-SMOW) = 7.6 to 9.8%.) are consistent with an origin resulting from fluid exsolution at the end of the high temperature fractionation trend. A two-stage model involving fractional crystallization and hydrothermal fluids is proposed for the mineralization of the Bachu REE deposit. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据